Purpose of Course: To provide a standard course in the methods of analyzing data, statistical concepts and models, estimation, tests of significance, introduction to analysis of variance, linear regression and correlation.

Workbook: Statistical Methods Math 1342 Pat Foard(shrink wrapped)
Supplies: Any scientific calculator. (TI Inpire is not allowed.)
Attendance: Attendance of all class meetings is mandatory. In order to be officially dropped from the class, students must go to the registrar's office to withdraw with a grade of W. Students who fail to withdraw themselves from a class will receive an F for the course.

Cell Phones: In this class, the instructor reserves the right to ask a students to leave the class if a cell phone is left on and it disrupts the class. This instructor defines disrupting the class as allowing the phone to ring, vibrate in class or answering the phone in class. This is very disrespectful to your classmates and your instructor.

Grade Determination: Your final grade will be the average of the major exams and the homework. There will be no makeup exams given. A missed exam will receive a grade of 0 .
$A(90-100) \quad B(80-89) \quad C(70-79) \quad D(60-69) \quad F(0-59)$
Homework: Homework will be assigned daily but collected in a folder in order until the day of the test. The homework folder will be turned in as you pick up a test. If it is turned in later you will be penalized points at the discretion of the instructor. Questions are taken at the next class period only. You are responsible for keeping up to date and prepared. No late homework will be accepted...no exceptions. Keeping up to date and current on homework has been shown to correlate with passing the course. Some short homework assignments will be done in class and turned in during the class. These in class assignments cannot be made up.
*During exams and labs the use or possession of smartphones, smart watches, water bottles or any labeled bottled drinks, and bathroom breaks are not allowed. Any infraction will be penalized with a minimum 15 point deduction on exam and can result in the removal of the student from the course.

Dropping a course: Refer to the current catalog.
Equal Opportunity: In this class the teacher will establish and support an environment that values and nurtures individual and group differences and encourages engagement and interaction. Understanding and respecting multiple experiences and perspectives will serve to challenge and stimulate all of us to learn about others, about the larger world and about ourselves. By promoting diversity and intellectual change, we will not only mirror society as it is, but also model society as it should and can be.

Disabilities Statement: Students with disabilities, including but not limited to physical, psychiatric, or learning disabilities, who wish to request accommodations in this class should notify the Disabilities Services Office early in the semester so that the appropriate arrangements may be made. In accordance to federal law, a student requesting accommodations must provide acceptable documentation of his/her disability. For more information, call or visit the Disability Services Office in the Student Services building, (806) 716-2577.

Course Outcomes: Upon completion of the course and receiving a passing grade, the student will demonstrate mastery of the following.

[^0]Class: Math 1342.001/.002 MW 9:30-10:45/MW 2:30-3:45
Instructor: Alma F. Lopez
M112/M112

- Wednesday
- W

Monday	Tuesday	Wednesday	Thursday	Friday
January 14 Syllabus and 1.1(28-29)	January 15	January 16 1.2 Freq Dist (30-32)	January 17	January 18
January 21 MLK Holiday	January 22	January 23 1.3 Graphs (33-38)	January 24	January 25
January 28 1.4 Central Tend (39-40)	January 29	January 30 1.5 Variation (41-44)	January 31	February 1
February 4 1.6 Position (45-49)	February 5	February 6 Review	February 7	February 8
February 11 Test 1	February 12	February 13 2.1 Correlation (58-63)	February 14	February 15
February 18 2.2 Regression (64-69)	February 19	February 20 Multiple Regression	February 21	February 22
February 25 Review	February 26	February 27 Test 2	February 28	March 1
March 4 3.1 Probability (89-92)	March 5	March 6 3.2 Pobability (93-95)	March 7	March 8
March 11 Spring Break	March 12 Spring Break	March 13 Spring Break	March 14 Spring Break	March 15 Spring Break
March 18 3.3 Counting(96-98)	March 19	March 20 3.4 Binomial (99-102)	March 21	March 22
March 25 3.5 Normal Prob (103-106)	March 26	March 27 Review	March 28	March 29
April 1 Test 3	April 2	April 3 4.1 HT-sample mean(127- 130)	April 4	April 5
April 8 4.2 Proportions and Variations (132-134)	April 9	April 10 4.3 HT-one sample (135- 137)	April 11	April 12
April 15 4.42 mean (138-140)	April 16	April 17 4.5 two prop (141-143)	April 18	April 19
April 22 Easter Holiday	April 23	April 24 Confidence intervals	April 25 LDTD	April 26
April 29 Review,final project due	April 30	May 1 Test 4	May 2	May 3
May 6 Final Exam Section 2 1-3 pm	May 7	May 8 Final Exam Section 1 8-10 am	May 9	May 10 Commencement

[^0]: 1. Represent raw data using frequency distributions. 2. Represent raw data using polygons, ogives, histograms and pie charts. 3. Calculate measures of central tendency, variation and position for both grouped and ungrouped data and interpret in writing the significance and meaning of the calculations. 4. Calculate coefficients of variation and skewness and interpret in writing the significance of the calculations. 5. Calculate classical and empirical probabilities $\quad 6$. Apply binomial, Poisson, and normal distribution properties to calculate probabilities and interpret in writing the significance of the calculations. 7. Calculate mean, variance and standard deviation of probability distributions and interpret in writing the significance of the test results. 8 . Evaluate a hypothesis testing situation to determine the appropriate test to be used. 9. Use parametric and non-parametric tests for hypothesis testing and interpret the results and significance in writing. 10. Calculate simple and multiple regression equations and use equations and use the equations to make predictions. 11. Calculate coefficients of correlation, determination, and non-determination and interpret in writing the significance of the calculations
